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Abstract

We have shown that the entire Fermi surface can be mapped

by using geometic resonances in the sound attenuation in tilted

magnetic fields and the drift velocity of the carriers along the

magnetic field simultaneously determined. The general features

of the phenomena considered do not prove dependent on the

particular models used in our calculations.

In addition to the results specifically pertaining to

tilted fields, we have found that when the assumptions of equal

effective masses and relaxation times are dropped for a two band

model of a semi-metal, the contribution of the two types of

carriers to the ultrasonic absorption is additive. On examining

the contribution to the absorption for a model of majority and

minority carriers, we have found, also, that the minority

carriers dominate the attenuation when they are in the region

of geometric resonances.
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I. Introduction

In the past few years, experiments have been performed on magneto-

acoustic absorption in metals and semi-metals at low temperatures. 1 -7

Several interesting phenomena have been observed which prove useful in

determining the electronic structure of metals. In a transverse magnetic

.eLd, there are oscillatlonr in the ultrasonic attenuation with magnetic
8-11

field. These oscillations occur when the cyclotron diameter of an

extremal orbit is equal to an integral number of wave lengths. Also, in

the high field limit, when the magnetic field is tilted from a direction

perpendicular to the direction of propagation of the sound wave, there is

an increase in the attenuation. 1 2  This increase occurs when the carriers

drifting along the field with the maximum velocity remain in exact phase

with the sound wave. The extremal dimensions of the Fermi surface can be

obtained from the periods of the magneto-acoustic oscillations while the

Fermi velocity can be determined from the critical angle of tilt at which

the increase in attenuation begins.

The possibility of combining the tilt effect and the geometric

resonance experiments to obtain information about the dimensions of non-

extremal orbits on the Fermi surface now presents itself. 1 3 Through such

an experiment, the whole Fermi surface could be mapped out.

In Section II we derive the expressions for the conductivity tensor

that are appropriate in the region of geometric resonances for tilted

fields. In Section III we treat the calculation of the ultrasonic attenu-

ation for the case of the free electron gas in a uniform positive back-

ground discussed by Cohen, Harrison, and Harrison8 as a model for a metal.

In Section IV we do the same type of calculation for a two spherical band
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model of a semi-metal discussed by Harrison. We also examine the

effect of relaxing his assumptions of equal effective masses and relax-

ation times, for the two kinds of carriers. Section V is devoted to cal--

culating the acoustic attenuation for a model of majority and minority

carriers with a positive background. A discussion of the various phenome-

na which we have investigated theoretically and of their physical signi-

ficance is given in Section VI.

II. Derivation of the ConductivI1Vy Tensor

Previous theoretical work has indicated that the geometric resonance 8

and the tilt effect 1 2 arise from the dependence of tne components of the

conductivity tensor on the magnetic field strength and the angle of tilt.

We therefore begin by evaluating the components of the conductivity tensor

in the region of geometric resonance for arbitrary angle between the di-

rectlon of propagation and the magnetic field. The general expressions

for the conductivity tensor in the presence of a magnetic field derived by

Cohen, Harrison, and Harrison using a model of a free electron gas are

• -•- 0

<:•,. _ cu-r -- , )
r-osV4JATh n 1
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In the above 1 5 , the magnetic field is in the z direction, and the y

direction is perpendicular to both the magnetic field and the direction

of propagation of the sound wave. The angle between the magnetic field

and the direction of propagation is -_ . The quantity X =

is the sound wave number times the cyclotron radius : and W•

is the sound frequency.

In the region of geometric resonance X is of order but greater than

unity, and if in addition I we need only keep the n-O

terms in the summation. The condition X S [ also must be satis-

fied so that our results do not hold in the limit )-• -l However we

are mainly interested in angles of tilt Just beyond I n SViY

where V. Is the sound velocity and V.-_- the Fermi velocity so this con-

dition imposes no hardship. The components of the conductivity tensor

now reduce to
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.,[s1 (11.2)

51cr136 c'T (Y, .oos )
CL + coa W-r- r\~~ -n)J

3do

L S 4 L ~-c

where 5o (].o svY) is an oscillatory function of •( previously defined.

We are now interested in evaluating integrals of the type that appear,

e. -r., in . When WZ >> I , the demoninator inside the integral is a

rapidly varying function of e which gives rise to a resonance when we have

values of 0 that sati.fy .oS - when S'" V >

When the angle of tilt is less than the critical angle given by sn Vr'•/V

we can nc longer have a resonance effect in the denominator since the

cosine carnot be greater than one. When ( is not too large, the Bessel

function is a slowly varying function of e compared to the resonance

denominator, and it can be taken out of the integral and evaluated at the

angle The inte ratio of t 14----c remainder of the integrand

can then be easily performed to yield the following result for 0 16

,.TOX. L M (11.3)
?LO

(C -s ),
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where N and M are functions of4t and V bui not of magnetic field!2

C ~ $~ri) ~~'~)(11.41)VA~ O

Numerical values of the functions N and M are given in Table I for-

various values of wt and V

For our further use, it proves necessary to calculate explicitly

the C component of the clonductivity tensor, where we now transform to

a coordinate system in which the 1 direction is the direction of propa-

gation of the sound wave and the 2 direction is the same as the pre-

viously defined y direction. It is only necessary then to know the C

and C7~ omponients to compute .We have for
Ia7

-~cos~ (os

(=I.5)

Because of the fact that wle have diffusion, the effective conductivity

tensor that plays an important role in ultrasonic attenuation calculations

is not bu�bt • where the tensor R has component-s

'(11.6)

GýC -L 'ý -r ) \VsC- L
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The component of the effective conductivity tensor that corresponds to C7j

is C T J, +
3~) -4- +i

(11.7)

The approximations that were made in obtaining (11.7) are valid in the

range V• £ when WT"; I The physical basis for the approxi-

mations is that orbits that are drifting along the magnetic field with

a velocity that has a component in the direction of propagation equal

to V. are exactly in phase with the sound wave and therefore dominate

the attenuation when cot , . The critical angle v,. marks the angle of

tilt at which the carriers drifting along the magnetic field with the

maximum velocity (L.A. \ir ) are in phase with the sound wave so that only

for j '_ can We have orbits that will be in exact phase with the sound

wave.

III. Free Electron Gas

Expressions for the attenuation of sound in a free electron gas

with a smeared out positive background have been derived in the litera-

ture.8 The attenuation coefficient or power density dissipated per unit

energy flux is

Y(111\1)
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where m is the electron mass, M is the atomic mass of the metal repre-

sented by the model, I is the mean free path and $• is a diagonal

component of the tensor given by

(111.2)

The tensor 8 has only diagonal components X. - , l -.
wand "

where an. Because frequencies even up to

the microwave range are small compared to the plasma frequency CAup,

is always a small quantity. On the other hand, in the microwave range of

ultrasonic frequencies 0 will become of order or greater than unity.

Physically, for frequencies smaller than the plasma frequency the longi-

tudinal currents must vanish because the electric fields set up by any

relative charge separation will be very great. However, the electric

fields set up by the relative transverse currents are weaker by a factor

of and therefore the screening of the transverse currents breaks

for microwave frequencies.

When screening breaks down (;.>.) I > C j ) for the trans-

ver•e currents, the longitudinal component of becomes

I'

S I
[F (111.3)

When there is no break down in screening, the expression for S11 contains

combinations of the other components of the conductivity tensor. Detailed

I' calculations have shown, however, that for • • the other components

of the conductivity tensor give a negligible contribution and 5, again
1[
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has the form (111.3). This can be seen very clearly in the case when the

magnetic field and direction of propagation are perpendicular to each
8

other from Fig. 3 in Cohen, Harrison, and Harrison. In this figure, the

field dependent part of So is plotted versusX for both @<I and • >

The curves for both cases coincide when X >a. Putting the expression

for 0 into (111.3) we get

+1 - I I.o ) II J

(mx1.4)

The relative attenuation 5 is plotted versus
Y _, in Fig. 1. The oscillations in the attenuation are much stronger

than in the case of the purely transverse field. There are maxima in

where the square of the Bessel function . has its maxima. Also there

are minima in 5,, where the Bessel function J' has its zero. 17 The

values of Y cas i where 5 has its maxima and minima are given

in Table II.

IV. Two Spherical Band Model

A two spherical band model of a semi-metal has been studied by

Harrisoni4 for the calculation of ultrasonic attenuation in bismuth. In

calculating the attenuation he made the assumption of equal masses and

relaxation times for the holes and the electrons for the sake of simplica

ity. We have rederived his expressions, where necessary, without making
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this assumption. We find that both the total current and the difference

between the electron and hole currents respond to the sums and differences

of the parameters of the two bands. The total current and the difference

between the electron and hole currents 4rG

LA 2. e
, =., J t- p , - T . E +

whre [ -@7"4 • •o. ' is the sum of the electron and

Shole conductivities and • •aa a ••(h is their difference.

Saand V• are the electron and hole deformation potential tensors. In

the presence of the sound wave, the energies of the electron and hole

i bands become, according to Harrison1 7

LUU

- (IV.3)

where isand are the energies of the band edges when there is no

sound wave. The electric field is derivable from the currents by Maxwell's

equations b ar

E go (A

0
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where 4 is the dielectric constant of the material. The energy dis-

sipated has been previously calculated for the two band model14 and is

U +

Substituting (IV.l), (Iv.2), and (IV.4) into (Iv.5) an~d introducing the

matrix P= •- we rind for the energy dissipated

F, • •'.v, e t-- " + [y•JL '-LI"

-- _ d-4. "V''[j rJ,-
Sbttnutingas where) the 2) dfratind forces inetro V nd intodcig.h

m , z obtan for te "

I6

Sn hecae hreth dfomtio foce re, trong ie

I I , e o Tai fo

t~L
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S(IV.T).

where

The restriction to strong deformation forces is easily satisfied in the

14-

semi-metals where it has been estimated that the quantity above is

1l03. For the attenuation of a longitudinally polarized sound wave we

get

4-' 1e (V* +~qv~~ [O-.r1ý' [f I(I -VD[P

All the terms in above expression which contain P'1 can be neglected when

we are at sound frequencies below the plasma frequencyj then we have

screening, and the longitudinal currents nearly vanish. Therefore as long

as the electron and hole deformation potentials are not nearly 1800 out of
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phase (i.e., VC 4) only the terms containing the sum of the

deformation potentials remain. The second term in the expression con-

taining the sum of the deformation potentials has been calculated ex-

plicitly and has been found to be negligible except in the region of

Harrison's high field peak for frequencies of interest (i.e. in the

frequency region > 10 mc for Bi). Therefore, in the regions of geo-

metric resonance and also in the region of the high field tilt effect

I we have

(Iv. 9)

and we can see that the contributions to the ultrasonic absorption from

the two bands are additive. Because of this additivity, the contributions

of each of the bands to geometric resonance and to the tilt effect are

separable. The assumptions of equal effective masses and relaxation times

for the two bands are therefore not unduly restrictive in interpreting

results from experimental data.

We now return to the assumptions of equal masses and relaxation times

to calculate Si for the case of geometric resonance in tilted magnetic

fields. As we have Just shown, for values of the deformation potential

and the frequency ranges of interest, these assumptions are not re-

strictive. We then have

(Iv.lo)
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where V is the effective mass of the carriers and rn is the free

electron mass. Substituting the expression obtained for 0,,' (11.7) into

(IV.lO), we obtain for the normalized attenuation

(IV.ll)

The normalized attenuation is plotted versusX in Fig. 2. The oscil-

lations of the attenuation wILh Y are very similar to those shown in

Fig. 1 for the model of a free electron gas. The only difference between

* the two figures besides a difference in scale occurs in the high field

* limit. Therefore we can expect very similar results for both models in

the geometric resonance region except for the orders of magnitude of

the effect.

V. Majority and Minofitty Carriers

We now calculate the ultrasonic attenuation for a model of majority

and minority carriers with a positive background to represent the posi-

tively charged ions. The model is appropriate when we have a small

section of the Fermi surface which has a much smaller Fermi velocity than

the remainder of the Fermi surface. We assume that we have two spherical

pieces of Fermi surface with Fermi velocities and VF and numbers*

of carriers • and f n - = ) such that nor -

where is the number of positive ions smeared out in the background.
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To make the calculation simpler we assume that the effective masses and

relaxation times of the two kinds of carriers are equal.

The total current contains a contribution from the positive back-
ground as well as from the two types of carriers

fet +J P .C (v.1)
J!

The electromagnetic field set up by the passage of the sound wave can be

calculated self-consistently from Maxwell's equations. We can write the

relation between the electric field and the total current as

(v.2.)

where B is the diagonal matrix defined in Section III with components

"" 8 Aa 0 From the solution

of Boltzmann's equations and (V.1) we obtain

i- -Aa - - - v 3

rw'

[/
Swhere and U are the effective conductivity tensors for the two kinds

i ~ of carriers. The energy dissipated per unit volume in the case of the

majority and minority carriers is

t "
[E



16

'a r C $ta)-t)(V. 4)

where the first term inside the brackets is the energy transferred from

the sound wave to the two types of carriers and the last two terms are

the energy fed back into the sound wave because of the drag exerted by

the two kinds of carriers on the positive background. These drag forces

arise because the average carrier velocity (V ) before collision

in general differs from that after collision.18 Using (V.1) and (V.2)

to simplify (V.4) we have

(v.5)

We can now use (V.1), (V.2) and (V.3) to obtain the electric field in

terms of the sound field L set up by the sound wave

--3-

(v.6)

We can see that the conductivity tensors of the two types of carriers come

in only in the form 4- 4 Q t . In other words, their con-

ho o % a en

tribution comes in the form of the effective conductivity tensor of a
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group of carriers weighted by the fraction of the total niumber of carriers

in the group. Thus for the tensor - which is directly related to the

absorption we have

(v.7)

For the ratio of the Fermi velocities of the minority to the majority

carriers we have assumed "Ft/v • 0. . Therefore we have I0

and T_•- 1 . If the minority carriers are in the region of geometric

resonance, i.e. X- = , then the majority carriers are in

the region between geometric resonance and cyclotron resonance, i.e.

Z > 1 0 , and their conductivity tensor Is not strongly dependent on

magnetic field.

To calculate the attenuation of longitudinally polarized waves when

either • or Bc I and > Y we can use (III.3) by replacing O7-"

by + •% . For the majority carriers we get OT

by using the limiting form of the expressions (II.i) for large %
We first treat the case where the magnetic field is transverse to the

direction of propagation. The conductivity tensor for the minority

carriers is

' " 'c - :,, (X, IU ~ ao(X 1)](v.8)

Using these expressions for the conductivity tensors of the minority and

majority carriers, we get for the attenuation when the minority carriers
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are in the region of geometric resonance

±-A (~I,) oUi-~.c
..÷ v: - -- U

From (V.9) we can see that a small number of carriers in the geo-

metric resonance region dominates the attenuation despite the presence of

a large number of carriers which do not satisfy the geometric resonance

criterion. The expression (V.9) resembles the expression for the attenu-

8ation of longitudinal waves in a free electron gas model except for the

factor which arises from the difference in the Fermi velocities

of the two kinds of carriers. Therefore if we have small sections of the

Fermi surface on geometric resonance, we will be able to observe the

osci1atLions due to these sections although the remainder of the Fermi

surface is not in the geometric resonance region. We can now proceed to

the calculation of the attenuation for geometric resonances in tilted

magnetic fields. The conductivity component for the majority carriers is

again - We can use (II 7) for the appropriate com-

ponent of the conductivity tensor for the minority carriers. The attenu-

ation then becomes

3v~ _ ___ __ ___ __ ___ __ ___ __ ____a
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where we have dropped terms that are of order . The part of

the attenuation that depends upon the magnetic field and the angle of

tilt is similar to that of the two band model developed in Section IV.

Therefore we have the same general type of geometric resonance in tilted

magnetic/fields as in the case of a semi-metal except for a scale factor.

In the case of majority and minority carriers in tilted fields, the

minority carriers dominate the attenuation as in the case of the non-tilted

field discussed earlier in this section. Therefore we can use geometric

resonances in tilted fields the map out small sections of the Fermi surfaces

as in the two cases discussed previously despite the presence of the re-

mainder of the Fermi surface. This is important because, for many

materials, only small portions of the Fermi surface have a Fermi velocity

small enough for the tilt .effect to occur at measurably large angles.

VII. Discussion

In our calculations in Sections III, IV, and V we have found geo-

metric resonances in tilted magnetic fields, the form of which, apart

from field and angular independent scale factors, seems to be indepen-

dent of the model used for the calculation. The only qualitative dif-

ference between the models used appears in the high field limit. More-

over, the oscillations which appear in the case of tilted fields are much

stronger than those which appear in transverse fields. Mathematically,

in the tilted field case the oscillations arise from the Bessel functions

n e C o S l tansvers which have zeros at certain values of X he

In the case of exactly transverse field the oscillations arose from the
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less rapidly varying •.2C which does not have any zeroes and which is

the square of the Bessel function averaged over the whole Fermi surface.

Physically, in the tilted field case, we have one orbit dominating the

attenuation instead of an average over all orbits which gives a heavy

weight to extremal orbits and which nearly washes out the amplitude of

the oscillations.

When the magnetic field is tilted from the direction perpendicular

to the direction of propagation, there are no orbits drifting along the

magnetic field in exact phase with the sound wave until we reach the

critical angle Mc., given by sit% . At this angle, carriers

drifting along the magnetic field, which are at the tip of the Fermi sur-

face, have a component of drift velocity in the direction of propagation

equal to the velocity of sound. These carriers therefore drift in exact

phase with the sound wave, and they dominate the attenuation. As we

increase the angle of tilt beyond t1he critical angle, other orbits drift

in phase with the sound wave, and they dominate the attenuation. By

varying the angle of tilt, we can therefore bring orbits from all over

the Fermi surface into phase with the sound wave and make them dominate

the attenuation. We can then, by varying the strength of the magnetic

field, get geometric resonanues from each orbit that dominates the

attenuation separately.

The condition for a maximum in the oscillations when the magnetic

field is tilted at an angle I is

doSV = (VI.l)

where 5 •'m 1 is the cyclotron diameter in real space and
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is the dimension of the Fermi surface transverse to both the

magnetic field and the direction of propagation. The situation is shown

in Fig. 3. It is the projection of the cyclotron diameter in real space

in the direction of propagation that must be equal to an integral number

of wave lengths. The drift velocity of the orbit along the magnetic field

can also be obtained since the component of the drift velocity along the

direction of propagation must be equal to the velocity of sound for the

orbit to dominate the attenuation. Therefore at an angle of tilt •

the orbit dominating the attenuation has a drift velocity of

VS
V'4 z

'nV (VI.2)

The relationship between the angle of tilt and the drift velocity is

shown in Fig. 4. Therefore the linear dimensions of the Fermi surface and

the drift velocities can be detsrmlneverywhere and nhe

angle of tilt occurs at measurably large angles.

The condition cor -J arises because for an orbit to dominate

the absorption, it must drift in phase with the sound wave for many

periods before the carriers traversing the orbit are scattered to other

orbits. If this condition is not well satisfied, then we obtain com-

parable or greater contributions from orbits other than the one we are

interested in and we are no longer able to determine the dimensions and

drift velocity of a single orbit. The requirement that the angle of tilt

occur at measurably large angles arises because the solid angle of the

Fermi surface mapped out is a very rapid function of angle of tilt, for
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angles Just beyond V . Therefore if this requirement is not satisfied,

only a small solid angle of the Fermi surface around its extremal di-

mensions would be mapped out and no new information would be gained.

The condition G f would require microwave sound waves and

materials of ultra-high purities except perhaps for the semi-metals and

tin, zinc, and - 'um among others. The requirement that the angle of

tilt occur at mea. bly large angles is satisfied if there are sections

of the Fermi surfaL Ith a small Fermi velocity such as occurs in the

semi-metals and in certain portions of the Fermi surfaces of tin, zinc,

magnesium, gallium, etc.

In materials where the conditions for observing the combined geo-

metric resonance-tilt effect phenomena are satisfied, it should prove a

very important tool in determining the electronic band structure. In

materials in which the condition OAJC> is only marginally satisfied,

we can still identify the first few oscillabloris with the orbit drifting

in exact phase with the sound wave, as the discussion in Appendices A

and B shows. The remaining oscillations would be harder to interpret

experimentally, as in the region beyond the first few oscillations, orbits

other than the one drifting in phase contribute significantly to the

attenuation.

We note, in passing, that the strong oscillations observed by Morse

in the noble metals for the dog's bone 1 1 orbit 1 9 are more reminiscent of

the geometric resonances occurring in tilted fields than of those pre-

dicted by Cohen, Harrison, and Harrison in the free electron model for

transverse field. In the case of the "dog's bone orbits, all the orbits

contributing to the attenuation have very nearly the same diameter in
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momentum space. Therefore we would have, as in the case of tilted fields,

one orbit or type of orbit dominating the attenuation instead of an

average over all the orbits. These would result in the oscillations

being much stronger than predicted by the free electron model. We have

a]r'eady shown in Section V that those orbits on the Fermi surface that

are in the geometric resonance region will dominate the attenuation even

in the case of transverse magnetic fields.
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Appendix A

The evaluation of the rapidly varying part of the integrand dis-

cussed in Section II and the validity of the approximations made in

treating it as rapidly varying compared to the Bessel function warrant

further discussion. The remainder of the integrand, after the slowly

varying part has been removed, is of the form

+ L W3C sriX - A

21For large W , there is a relation that enables us to replace the

integrand by

-+ Lfl1 Strn 01

W V

(A.2)

where P stands for the principal part of the function. Therefore when

• •, Kthe approximation made in treating the denominator of the

integrals appearing in (11.2) as rapidly varying is more readily justi-

fiable for the real part of the integral (A.1) than it is for the

imaginary part. For a better approximation with Wt not too large, we

can evaluate the rapidly varying integral (A.1) directly. The real and

imaginary parts of (A.1) are the functions G and 41 defined in (11.4).

The functions G and H are given for various values of & and j in

Table III.

It may also be noted that the approximations made in deriving (11.3)
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are least valid where the Bessel function C0 (7,1oS 1i'i Q) has its

zeroes. To evaluate the approximations made, in this region, we expand

(I Yo~sn0' around thLe angle

The square of the Bessel function 13 an even function of n'

so that when J.• z.wa" - o we have

-(sn8 Sin4')%

where wsuare used the Bessel futione n f enc•tion o 2
whee w hae ued he amiiarBessel function identities2

TJV S h-) -TV and C-, = (-.), Substituting the

expansion (A.3) for J (•cas sv fIm in the integral in (11.2) we

get an expansion in terms of the derivatives of %J , oss is

evaluated at 6 . The coefficient of the nth derivative in this ex-

pansion has been calculated to be of order cat. . Therefore

the condition for the approximations made in deriving (11.3) to be

valid is that rc&* . . We can rewrite this condition in

terms of the parameters i and K

S< I (A.5)
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This condition arises because for values of X which violate this con-

dition the Bessel function is not a slowly varying function of S com-

pared to the denominator of the integral and the approximation breaks

down. For o = I a and V -v •, L i , the condition for the

validity of the approximation is that X c / O so that only the first

few oscillations can be easily interpreted as coming from a given orbit.

We can see from (A.5) that we can increase the value of ) for which

the approximations made are valid by increasing .

Appendix B

In Appendix A we noted that when f3; (X..e ) has its zeroes,

the apprcxt1 ,at ions used li dUriving were not valid and that we must use

expression (A.3) instead. Introducing (A.4) into the expression for

in (11.3) we find thati 'T

Account has been taken of the correction to (II.7) contained in (B.1),

when the Bessel function has its zeroes, in calculating the relative

attenuation shown in Figures 1 and 2. The effect of the correction is

to decrease the peak to valley ratio from what it would be from (111.4)

and (IV.11) without considering the correction.
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Figure Captions

Fig. 1 -- The normalized attenuation 3 C(s1 ,"iQt 4 J&JzJ'"J/(ji)

is plotted versus Xz I for the model of a free electron gas.

The angle of tilt in this case is w= o. a Q and w X, 0

The plot is correct for all magnetic fields when one screening

of the transverse currents breaks down and is correct for

R • when screening does not break down. In the region

shown, the oscillations can be attributed to a single orbit.

Fig. 2 -- The normalized attenuation (504, I)/ 4 V .. VOh) ()

as a function of Z-sR for a two spherical band model con-

sisting of electrons and holes. Tho plot is for an angle of

tilt of V 03. Z aid Wt ;- I . The normalized attenuation

Ql ( -) for the case of minority and ma-

jority carriers when the ratio • 0 follows the sameIV,

plot for the same values of V and c4r • The oscillations in

the region shown can be attributed to the orbit driftnq in

phase with the sound wave.

Fig. 3 -- When the magnetic field is tilted at an angle I in the di-

rection of the sound wave, the orbit gives rise to a maximum

in the attenuation when the component of the orbit diameter

in the direction of propagation is equal to an integral

number of wavelengths.

Fig. 4 -- The orbit which dominates the attenuation is shown to drift

along the magnetic field with a velocity VH 61'n
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Table I

Values of the functions N and M for ey - 1, )0 and 100 and angles

of tilt from M 0.008 to 0.015

c0 =iO c)t =100

N M N M

0.007 -0.221 -0.065 -0.239 -0.007

o.oo8 -0.331 -0.126 -0,373 -0.014

0.009 -0.484 -0.261 -0.634 -0.036

0.010 -0.574 -o.61o -1.657 -0.756

0.011 -0.232 -0.928 *-0.395 -1.367

0.012 -0.062 -0.999 -0.011 -1.276

0.013 +0.13 -0.994 0.205 -1.186

0.014 0.268 -0.957 0.349 -1.105

0.015 0.373 -0.912 0.453 -1.034

4.)Z =1I

N M
0.007 0.017 -0.073

0.008 0.018 -0.104

0.009 0.028 -0.128

0.010 0.043 -0.153

0.011 0.060 -0.178

0.012 0.078 -0.203

0.013 0.105 -0.220

0.014 0.129 -0.243

0.015 0.151 -0.257
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Table II

Magnitude of dta"ro a It' gat Extrema

Maxima Minima

0 (1.29)* 2.41

3.84 5.52

7.02 8.65

For the free electron case, the first maxima occurs at this value;

all the other extrema occur at the same values of dcOS ,

for the various models considered.
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Table III

Values of the function G and H for Wt = 1, 10, and 100 and

angles of tilt from V = 0.007 to 0.015.

(Jt = 1 WC• 10 LOt = i00

G H G H G H
0.007 105.7 90.9 37.1 240.5 3.92 247.8

o.o08 108.7 87.9 51.2 261 5.55 274.5

0.009 110 84.3 81.1 2U8U3 10.49 326.7(

0.010 ill 80.5 152 299.6 156.6 529.8

0.011 111.8 76.3 210 245.4 276.1 276.3

0.012 112.5 71.9 219 190.6 257.3 199.7

0.013 111.5 67.4 214 152.7 238.8 156.7

0.014 111.4 62.8 204 15.9 222.3 127.9

0.015 110 58.6 193 1o6 207.8 107.3
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